Topographic plasticity in primary visual cortex is mediated by local corticocortical connections.

نویسندگان

  • Mike B Calford
  • Layne L Wright
  • Andrew B Metha
  • Vivian Taglianetti
چکیده

The placement of monocular laser lesions in the adult cat retina produces a lesion projection zone (LPZ) in primary visual cortex (V1) in which the majority of neurons have a normally located receptive field (RF) for stimulation of the intact eye and an ectopically located RF (displaced to intact retina at the edge of the lesion) for stimulation of the lesioned eye. Animals that had such lesions for 14-85 d were studied under halothane and nitrous oxide anesthesia with conventional neurophysiological recording techniques and stimulation of moving light bars. Previous work suggested that a candidate source of input, which could account for the development of the ectopic RFs, was long-range horizontal connections within V1. The critical contribution of such input was examined by placing a pipette containing the neurotoxin kainic acid at a site in the normal V1 visual representation that overlapped with the ectopic RF recorded at a site within the LPZ. Continuation of well defined responses to stimulation of the intact eye served as a control against direct effects of the kainic acid at the LPZ recording site. In six of seven cases examined, kainic acid deactivation of neurons at the injection site blocked responsiveness to lesioned-eye stimulation at the ectopic RF for the LPZ recording site. We therefore conclude that long-range horizontal projections contribute to the dominant input underlying the capacity for retinal lesion-induced plasticity in V1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corticocortical connections mediate primary visual cortex responses to auditory stimulation in the blind.

Blind individuals have to rely on nonvisual information to a greater extent than sighted to efficiently interact with the environment, and consequently exhibit superior skills in their spared modalities. These performance advantages are often paralleled by responses in the occipital cortex, which have been suggested to be essential for nonvisual processing in the blind. However, it is currently...

متن کامل

Topographic Organization and Corticocortical Connections of the Forepaw Representation in Areas S1 and SC of the Opossum: Evidence for a Possible Role of Area SC in Multimodal Processing

In small-brained mammals, such as opossums, the cortex is organized in fewer sensory and motor areas than in mammals endowed with larger cortical sheets. The presence of multimodal fields, involved in the integration of sensory inputs has not been clearly characterized in those mammals. In the present study, the corticocortical connections of the forepaw representation in the somatosensory caud...

متن کامل

Visual projections induced into the auditory pathway of ferrets: II. Corticocortical connections of primary auditory cortex.

Although the development of corticocortical projections has been well studied, less is known about the role of sensory inputs in the specification of these connections. As part of an ongoing series of studies in our laboratory, we have examined the role of thalamic input modality in the development of corticocortical connections. These studies involve making unilateral lesions and inducing reti...

متن کامل

Principles governing auditory cortex connections.

Topographic maps are common constituents of the primary auditory, visual, and somatic sensory cortex. However, in most cortical areas, no such maps have yet been identified, posing a conceptual problem for theories of cortical function centered on topography. What principle guides the organization of these other areas? We investigated this issue in cat auditory cortex. The connectional topograp...

متن کامل

Topographic organization of human visual areas in the absence of input from primary cortex.

Recently, there has been evidence for considerable plasticity in primary sensory areas of adult cortex. In this study, we asked to what extent topographical maps in human extrastriate areas reorganize after damage to a portion of primary visual (striate) cortex, V1. Functional magnetic resonance imaging signals were measured in a subject (G.Y.) with a large calcarine lesion that includes most o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 16  شماره 

صفحات  -

تاریخ انتشار 2003